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Abstract. An analytical series method is presented for steady, two-dimensional, irrotational flow of a single layer
of constant-density fluid over topography. This problem is formulated as a Laplacian free-boundary problem with
fully nonlinear boundary conditions. The method is an iterative scheme that allows the calculation of analyti-
cal series solutions for supercritical, transcritical and subcritical flow regimes over arbitrary topography. By an
appropriate choice of the free-boundary representation, exponential convergence of the series solution is achieved.
With this accuracy, the issue of apparent dual transcritical/subcritical solutions previously obtained by boundary-
integral-equation methods (BIEM) is resolved. Results are compared with solutions previously obtained using
BIEM, and solutions are presented for flow over asymmetric and arbitrarily shaped obstacles.
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1. Introduction

Flow over topography has been a topic of interest in the mathematical and physical sciences
and engineering for many decades. Applications include flow in a channel and airflow over
mountains. Early solution methods were dominated by linear theories. For example, Kelvin [1]
studied flow in a channel obstructed by ridges or hollows, and Lamb [2, Section 249] cal-
culated the drag on a cylindrical obstruction. Long [3] linearised the governing equations
around uniform upstream flow of constant density and was able to obtain finite-amplitude-
wave solutions. Submerged singularities have also been used to model flow over obstacles
[4]. More recently, boundary-element methods have been used in conjunction with con-
formal mappings to calculate flow solutions for specific obstacles, such as semi-circles [5],
semi-ellipses [6], a step [7] and a triangular weir [8].

Fully nonlinear flow over arbitrary topography was first examined by King and Bloor
[9] who adopted a generalisation of the Schwarz-Christoffel transformation. An alternate
method was presented by Belward and Forbes [10] who used a boundary-integral method in
the original variables to compute downstream interfacial waves and single-layer transcritical
flow. Belward [11] also calculated solutions for fully nonlinear flow over successive obstacles.
Although some of these methods are theoretically capable of calculating flow solutions over
asymmetric and arbitrary obstacles, few such solutions have been published to date.

In the case of irrotational and incompressible flow, the flow over topography problem
reduces to solving Laplace’s equation subject to nonlinear boundary conditions. The loca-
tion of the upper surface is initially unknown, and it is along this free boundary that the
nonlinearity occurs explicitly, although the entire problem can be considered nonlinear. Most
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solution methods involve providing an initial guess for the position of the free surface which
is updated at each iteration using a cost function based on one of the boundary conditions.

Purely numerical schemes such as boundary-integral and boundary-element methods have
proved successful in solving these potential problems. But further computations are required
in order to determine information about the fluid at interior points. The analytical series
method presented in this paper has the advantage of efficiently producing continuous global
solutions over the entire flow domain with exact error bounds immediately available. These
methods have been used to solve steady saturated and unsaturated seepage problems on arbi-
trary flow domains by Read and Volker [12], or Gill and Read [13]. Note that in all these
earlier problems, the free-boundary condition could be linearised.

In this paper, we present an iterative analytical series method for solving flow over an
obstacle of finite length. We assume Laplacian flow, with fully nonlinear boundary conditions
along the free surface. Three flow regimes are possible: supercritical, transcritical and subcrit-
ical flow. The subcritical solutions, characterised by a train of lee waves downstream of the
obstacle, are the most difficult to calculate. The true test of success of a solution method is
measured by its performance in the subcritical case. We will show that the analytical series
method efficiently calculates accurate subcritical solutions with relative ease.

The convergence of the analytical series method may be enhanced, depending on specific
aspects of its computation. For example, with the correct boundary representation, exponen-
tial convergence of the series solution is possible. This is a remarkable result given the diffi-
culty researchers have had with this problem in the past.

With the increased efficiency and availability of error bounds we may investigate, with cer-
tainty, regions of the parameter space where solutions are difficult to calculate. For constant
Froude number and increasing obstacle height, subcritical solutions exhibit waves of increas-
ing amplitude. This behaviour continues until waves occur with a crest of 120o. At the same
obstacle height it is possible to determine the Froude number for which transcritical flow
occurs. Belward and Forbes [10] reported that transcritical and subcritical flows were possi-
ble at the same Froude number and obstacle height. This was in direct contrast to the work
of Shen [14] whose weakly nonlinear theory showed that the transcritical flow solutions were
a limiting case of subcritical flow. It is now apparent that the work of Belward and Forbes
was misleading because of a lack of accuracy in their solution method, and that transcriti-
cal flow may indeed be a limiting case of subcritical flow. It is definitely the case that both
solution types are not possible for the same obstacle height and Froude number.

A general theoretical framework for the analytical series method for known boundary prob-
lems is covered in full by Read [15] and is discussed briefly in Section 3. The representation
of the free surface is an important issue. In Section 4 we show that, with the correct choice,
exponential convergence of the series solution is possible. In Section 5 we examine the iterative
update scheme, in particular the form of the cost function. Results are presented in Section 6,
including comparisons with solutions from the boundary-integral approach. A selection of solu-
tions for flow over asymmetric and arbitrarily shaped obstacles is also presented.

2. Mathematical formulation

We denote the velocity field throughout the flow region by u and the free surface by y =η(x).
If the fluid has a vertical height of H0 upstream with a horizontal velocity of u0, then the
assumption of upstream uniform flow is written as

η(x)→ H0 and u →u0i as x →−∞, (1)
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where i is the horizontal unit vector. Downstream of the obstacle we assume that flow quan-
tities are bounded.

All variables are nondimensionalised in terms of H0 and u0, giving a uniform flow
upstream with unit height and velocity. The remainder of this paper will contain nondimensi-
onalised variables only. With these assumptions, the stream function �(x, y) satisfies Laplace’s
equation:

∇2�=0. (2)

If we denote the bottom boundary by y = f b(x), then the assumptions that the free surface is
a streamline, and that there is no penetration through the topography, give the top and bot-
tom boundary conditions

�(x, η(x))=1 and �(x, f b(x))=0. (3)

The flow domain is truncated to a finite length x ∈ [−s, s], where s is chosen large enough
such that the flow continues to satisfy the above conditions. We will discuss suitable choices
for the truncation parameter s in Section 6. With this truncation the side boundary condi-
tions become

�(−s, y)= y and �(s, y)= y

ηs
, (4)

where ηs is the height of the fluid at x = s. Note that the condition at x = s implies uniform
mass flux, and is less restrictive than the corresponding condition ultimately employed in the
boundary-integral method (see for example Equation (2.10) in Belward and Forbes [10]).

Within the fluid region, Euler’s equation of motion is satisfied. As we only consider sta-
tionary solutions, time derivatives can be set to zero. Also, since the flow is irrotational,
Euler’s equation can be integrated to give the Bernoulli equation which is evaluated along the
free surface y =η(x) to give

1
2

F2
u u2 +η= 1

2
F2

u +1, (5)

where u is the magnitude of the velocity, Fu is the upstream Froude number defined by Fu =
u0/

√
gH0, and g is acceleration due to gravity. The value of the Froude number largely deter-

mines the type of flow. Supercritical flow is wave-free and has F > 1 throughout the flow
domain while transcritical flow, also wave-free, has F<1 upstream of the obstacle and F>1
downstream. Subcritical flow is typically characterised by a train of lee waves downstream of
the obstacle and has F<1 throughout the fluid system. The magnitude of the velocity at any
point in the fluid can be expressed in terms of the stream function using

u2 =
(
∂�

∂x

)2

+
(
∂�

∂y

)2

. (6)

Note that the velocity potential �(x, y) can be calculated from the stream function �(x, y)
using the Cauchy-Riemann equations. We use the potential in an integrated form of the
Bernoulli equation (see Section 5).
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3. Analytical series method

The stream function �(x, y) is transformed to a related function ψ(x, y) that satisfies homo-
geneous side boundary conditions at x =±s. The transformation is defined by

�(x, y)=ψ(x, y)+ y + (x + s)y

2s

[
1
ηs

−1
]
. (7)

With this transformation ψ(x, y) will also satisfy Laplace’s equation:

∇2ψ=0, (8)

subject to the homogeneous side boundary conditions

ψ(−s, y)=ψ(s, y)=0, (9)

and the transformed top and bottom boundary conditions

ψ[x, η(x)]=1−η(x)− (x + s)η(x)

2s

[
1
ηs

−1
]

=ht (x), (10)

ψ[x, f b(x)]=− f b(x)− (x + s) f b(x)

2s

[
1
ηs

−1
]

=hb(x). (11)

The transformed velocity potential can be expressed as

�(x, y)=φ(x, y)+ x + 1
4s

[
(x + s)2 − y2

][
1
ηs

−1
]
. (12)

Once the transformed problem has been solved, a solution to the original problem is imme-
diately available.

Applying the method of separation of variables allows the eigenvalues and eigenfunctions
to be determined. The general solution can be expressed as

ψ(x, y)=
∞∑

n=1

Anun(x, y)+ Bnvn(x, y), (13)

where

un(x, y)= sinh
(nπy

2s

)
sin

(
nπ(x + s)

2s

)
, (14)

vn(x, y)= cosh
(nπy

2s

)
sin

(
nπ(x + s)

2s

)
. (15)

The transformed velocity potential has the form

φ(x, y)= A0 +
∞∑

n=1

Anūn(x, y)+ Bn v̄n(x, y), (16)

where

ūn(x, y)= cosh
(nπy

2s

)
cos

(
nπ(x + s)

2s

)
, (17)

v̄n(x, y)= sinh
(nπy

2s

)
cos

(
nπ(x + s)

2s

)
. (18)
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The series coefficients An and Bn are determined by invoking the upper and lower boundary
conditions (10) and (11) which, using the above notation, we may express as

ht (x)=
∞∑

n=1

Anut
n(x)+ Bnv

t
n(x), (19)

hb(x)=
∞∑

n=1

Anub
n(x)+ Bnv

b
n(x), (20)

where ut
n(x)= un[x, η(x)], ub

n(x)= un[x, f b(x)], vt
n(x)= vn[x, η(x)] and vb

n(x)= vn[x, f b(x)].
The series coefficients cannot be determined using the classical approach as the top and
bottom boundary conditions are not constant. However, a relationship between the series
coefficients can be determined by applying the principle of eigenfunction expansion to non-
orthogonal basis functions. This process is covered in full by Read [15] and is discussed briefly
here.

3.1. EVALUATING THE SERIES COEFFICIENTS

We assume that {vb
i (x), i =1,2, . . .} from Equation (15) is a linearly independent set of vectors

spanning a space of functions that includes ub
n(x) and hb(x). By expressing ub

n(x) and hb(x)
in terms of this set, substituting the expansions in the bottom boundary condition (11) and
rearranging, we get

Bn = khb
n −

∞∑
i=1

Ai k
ub
ni , n =1,2, . . . (21)

where kub
ni and khb

n are the expansion coefficients for ub
n(x) and hb(x), respectively. Carrying

out the same procedure on the top boundary condition (10) gives a similar expression

Bn = kht
n −

∞∑
i=1

Ai k
ut
ni , n =1,2, . . . (22)

where kut
ni and kht

n are the expansion coefficients for ut
n(x) and ht (x), respectively. Eliminating

Bn from (21) and (22) gives

∞∑
i=1

(
kut

ni − kub
ni

)
Ai = kht

n − khb
n , n =1,2, . . . (23)

Both sets of series coefficients are dependent on the expansion coefficients, which at this stage
are unknown.

3.2. EVALUATING THE EXPANSION COEFFICIENTS

In practice, the series solution is truncated after an appropriate number of terms have been
included. We assume N terms are sufficient to satisfy our accuracy criteria, and the truncation
becomes an approximation to the infinite series:

ψ(x, y)≈ψN (x, y)=
N∑

n=1

anun(x, y)+bnvn(x, y), (24)
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where an and bn are the estimators of An and Bn , respectively. The truncated form of the
velocity potential is

φ(x, y)≈φN (x, y)=a0 +
N∑

n=1

anūn(x, y)+bn v̄n(x, y). (25)

If we adopt the matrix notation [a]n = an and [b]n = bn , then after truncating the series,
Equations (21) and (23) can be written as

b =khb − K uba and (K ut − K ub)a =kht −khb, (26)

where K ut , K ub, kht and khb are the expansion coefficient matrices defined by
[
K ut ]

i j = kut
i j , [K ub]i j = kub

i j , [kht ] j = kht
j , [khb] j = khb

j , (27)

for i, j =1,2, . . . , N .
Read [15] first calculated the expansion coefficients using the orthogonality relationship

which, in this case, first requires the Gram–Schmidt process to construct an orthonormal
basis. Alternatively, least squares can simplify these calculations. But the majority of compu-
tational time in this formulation is taken up by calculating the inner-product integrals. There-
fore, we replaced the inner products with a collocation method [16]. This procedure assumes
that there are L ≥ N discrete evenly spaced points along the boundaries that satisfy the eigen-
function expansions exactly. Therefore

ub
n(xl)=

N∑
j=1

kub
nj v

b
n(xl) and hb(xl)=

N∑
j=1

khb
j v

b
j (xl), (28)

for n =1,2, . . . , N and l =1,2, . . . , L. In matrix notation, this becomes

U b = V b K ub and hb = V bkhb, (29)

where

[U b]ln =ub
n(xl), [V b]ln =vb

n(xl), [hb]l =hb(xl). (30)

A similar set of equations can be determined for the expansion coefficients for the top
boundary. Once these matrix equations are solved for the expansion coefficients, the series
coefficients in (26) can be determined. We have shown that, with the introduction of this col-
location method, the efficiency of the entire solution process is increased by several orders of
magnitude, with accuracy no worse than the full least-squares method [16].

3.3. ERROR ESTIMATES

The error in each solution is a combination of two factors: the truncation error in the series,
and the errors in the top and bottom boundary conditions. The truncation error incurred by
the series approximation is defined by εN (x, y)=�(x, y)−�N (x, y). As � and �N both sat-
isfy Laplace’s equation, so will εN (x, y) and therefore the maximum (and minimum) value of
the potential function will occur on the flow boundaries [17, Section 2.2]. Thus, the accuracy
of the flow solution is immediately available at each step of the iterative process by examining
the root-mean-squared (RMS) error in the top and bottom boundary conditions (3), and the
Bernoulli condition (5).
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The RMS error εh
N in the approximation of a function h(x) by hN (x) is given by

εh
N =

[
1
2s

∫ s

−s
[h(x)−hN (x)]2 dx

] 1
2

, (31)

where N is the number of terms used in the series. Note that εt
N is the absolute and relative

error for the top boundary condition �[x, η(x)]=1, and εb
N is the absolute error for the bot-

tom boundary condition �[x, f b(x)] = 0. As the Bernoulli equation must be satisfied along
the free surface, we can also calculate the RMS error for the Bernoulli condition εB

N , where
h(x)= 1 + F2

u /2 and hN (x)= uN (x, η(x))F2
u /2 + η(x). Similarly, we can calculate the error in

the velocity potential along the top boundary using (12) and (25).

4. Boundary representations

During the solution process, the top boundary is iteratively updated at a set of knot points.
Note that the density of update knot points is increased in areas of higher curvature. To
define the top boundary between these points, an interpolant is constructed. The solution pro-
cess is independent of the representation of the free surface, so an almost limitless choice of
interpolants can be employed. The subcritical solutions require the most attention because of
a more complicated profile in areas of high curvature. Figure 1 displays the top and bottom
boundary errors for a typical subcritical solution as functions of the number of terms in the
series for six different interpolants.

Clearly, the Fourier sine-series representation has a superior accuracy. If we assume that
the errors in Figure 1 have the form εN = N−k so that log εN = −k log N , then k is approx-
imately equal to 3·2 in the range 10< N < 150 for the sine-series representation of the top
boundary. This increases to 7·7 if we consider the range 50< N < 100. Similarly, if we con-
sider the sine-series representation of the bottom boundary, k is approximately equal to 3·0
for N <100 and increases to 12·8 for N >100. We believe that the slope of this line will con-
tinue to steepen and that we have exponential convergence in the series. The authors have dis-
cussed this further and given an explanation of why the sine-series representation performs so
well [18].

Figure 1. Semi-log plot of the RMS errors as a function of the number of terms in the series for six different
boundary representations. (a) Top boundary. (b) Bottom boundary.
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5. Iterative update scheme

The iterative process updates the top boundary η(x) at each step by evaluating a cost func-
tion based on the Bernoulli equation (5). The update method has the form

η(i+1)(x)=η(i)(x)− c(i)δη(i)(x), (32)

where i is the iteration count and c(i) is the multiplying factor which is chosen to enhance
the convergence rate and takes the place of the inverse Jacobian in Newton’s method. The
free-boundary increment δη(i)(x) is calculated using a cost function.

The magnitude of the velocity along the free surface can be expressed as u =d�/dζ where
dζ is measured along the streamline and (dζ )2 = (dx)2 + (dη)2. We integrate to give the veloc-
ity potential

�=
∫

u dζ =
∫

u

√
1+

(
dη
dx

)2

dx . (33)

Rearranging the Bernoulli condition (5) for the magnitude of the velocity along the free sur-
face gives

u =
√

2
F2

u
(1−η(x))+1. (34)

Therefore the velocity potential can be expressed as

�B[x, η(x)]=
∫ x

−s

([
2

F2
u
(1−η(x))+1

][
1+

(
dη
dx

)2
]) 1

2

dx, (35)

where the superscript B denotes the “Bernoulli” velocity potential. Using the series represen-
tation of the velocity potential in (12), we obtain that the integrated cost function has the
form

C(x)=�B[x, η(x)]−�N [x, η(x)]. (36)

Using this formulation, we calculated solutions for all three flow regimes for a large range of
obstacle heights and Froude numbers.

6. Results

The analytical series method is very flexible; however, the accuracy of each solution is affected
by many factors. In particular, we note four parameters: the number of terms in the series
solution, the number of update knot points, the number of terms in the Fourier-series approx-
imation, and the number of collocation points used to calculate the expansion coefficients.
These values must be chosen to ensure a high level of accuracy while minimising computa-
tional time.

The choice of truncation parameter s is not overly important in the solution process pro-
vided that the obstacle is well within the interval [−s, s]. The assumption of uniform mass
flux downstream is remarkably robust even for the wave solutions, particularly when s is cho-
sen to be midway between the trough and crest of a wave where there is no perceptible defor-
mation of the wave. When s is near a trough or crest, the computed η is inaccurate over the
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last wave. When this occurs, we remove the last wave from the solution. Figure 2 shows super-
imposed wave solutions for an obstacle height h =0·1 with s =1,2, . . . ,17 and Fu =0·5.

The standard bottom boundary that we used consists of a symmetric cosine-shaped obsta-
cle with half base length of l and maximum height of h, and is defined by

f b(x)=
{ h

2 [cos(πx/ l)+1] , −l ≤ x ≤ l

0. −s ≤ x ≤−l and l ≤ x ≤ s
(37)

Figure 3 contains a selection of transcritical and subcritical solutions for symmetric cosine
shaped obstacles with different heights.

These figures show that the analytical series method is correctly predicting the general
characteristics of each flow regime. That is, the hydraulic fall is deeper for higher obstacles
during transcritical flow, and the amplitude of the downstream waves is larger for higher
obstacles during subcritical flow.

6.1. COMPARING ANALYTICAL SERIES AND BOUNDARY-INTEGRAL METHODS

We will compare the solutions we have calculated with those determined by Belward and
Forbes [10] using BIEM. Figure 4 compares a single subcritical solution calculated using the
analytical series method and a solution calculated using BIEM.

We see that both profiles possess the same general characteristics. However, the solution
calculated using the analytical series method does not possess spurious upstream waves. The
presence of the upstream waves in the BIEM solutions is known to be caused by slightly inad-
equate boundary conditions employed at x =−s [10]. Note also the analytical series solution
has a larger wave amplitude downstream. This could possibly be explained as a cancellation
effect between the upstream waves in the BIEM solution interacting with the waves produced
by the obstacle.

Table 1 displays the RMS errors for a single transcritical and subcritical solution calcu-
lated by each method. Note that we were supplied with the free-surface knot points of the
BIEM solutions. To calculate the BIEM errors we carried out exactly the same process as for
the series solutions. That is, we used the knot points to construct a cubic spline so that the
evenly spaced collocation points could be determined. Then we represented the free surface
by a Fourier sine series and used the analytical series method to calculate the errors required
for the comparison.

We note that all errors are lower for the analytical series method. The most significant
difference is observed when comparing errors in the Bernoulli condition for the subcritical
solutions. The analytical series method has an error two orders of magnitude lower than the
implementation of BIEM by Belward and Forbes. The same observation was made for all
obstacle heights.

We now compare the range of obstacle heights for which each method was capable of
calculating solutions. Note that, for each obstacle, there exists a single transcritical flow
solution with a unique upstream Froude number. We observed very little difference in the
Froude number calculated for each obstacle height when comparing the two methods. These
values are displayed by the single solid line in Figure 5. The shaded region and the region
below the dashed line represent the subcritical solutions calculated by the analytical series
method and BIEM, respectively.

We observe that BIEM calculates both transcritical and subcritical solutions for some
obstacles at the same Froude number (i.e., the solid line crosses the dashed line). This is in
direct contrast to the theory of Shen [14] and was not the case with the analytical series
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Figure 2. Superimposed subcritical solutions for vari-
ous base lengths s. The limits of the flow domain are
marked with a ◦.

(a)
h(x)

h(x)

(b)

h = 0.1

h = 0.3

h = 0.5

h = 0.7

h = 0.09

h = 0.11

h = 0.13

h = 0.15

Figure 3. Examples of flow over symmetric obstacles.
In (a) Critical flow, s =5·0, l =2·0, and in (b) Subcrit-
ical flow, s =7.0, l =2·0, Fu =0·5.

Figure 4. A comparison of subcritical flow solutions
over a relatively large obstacle. Solid line: analytical
series method. Dashed line: boundary-integral method.
s =7·0, l =2·0,h =0·141, Fu =0·5.

Table 1. RMS errors in the Bernoulli condition (εB
N ), the top boundary (εt

N ) and the bottom boundary

(εb
N ) for a transcritical and subcritical solution calculated by the analytical series method and BIEM.

εB
N εt

N εb
N

Transcritical solutions (s =5·0, l =2·0, h =0·5, F ≈0·22)
Analytical Series 1·64×10−2 2·26×10−4 2·09×10−4

BIEM 3·39×10−2 3·42×10−4 2·10×10−4

Subcritical solutions (s =7·0, l =2·0, h =0·141, Fu =0·5)
Analytical Series 7·28×10−5 1·85×10−5 1·44×10−6

BIEM 4·52×10−3 1·88×10−5 1·45×10−6
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Figure 5. Obstacle heights for which solutions could be calculated for Froude numbers in the range 0·5≤ Fu ≤0·95.
Solid line: analytical series and BIEM critical solutions. Shaded region: analytical series subcritical solutions. Region
surrounded by dashed line: BIEM subcritical solutions.

method. Because of the significant increase in accuracy with the analytical series method, we
conclude that there are no obstacle heights that have both transcritical and subcritical flow
solutions at the same Froude number. This does not contradict the weakly nonlinear theory
proposed by Shen [14].

6.2. FLOW OVER ASYMMETRIC OBSTACLES

The standard form that we used for a bottom boundary containing an asymmetric obstacle
with a maximum height of h, an upstream base length of l1 and a downstream base length
of l2 is given by

f b(x)=




h
2 [cos(πx/ l1)+1] , −l1 ≤ x ≤0

h
2 [cos(πx/ l2)+1] , 0≤ x ≤ l2

0, otherwise.

(38)

Figure 6 displays supercritical, transcritical and subcritical flow solutions over asymmetric
obstacles.

The supercritical solutions in Figure 6(a) show that, although the obstacle is significantly
skewed, the resulting free surface is close to symmetric. We have also seen that, for flow over
a symmetric obstacle, the point at the maximum height of the supercritical solution has the
same x-coordinate as the point at the maximum height of the obstacle. Here we see that the
highest point of the free surface over the asymmetric obstacle does not coincide with the high-
est point of the obstacle.

Figure 6(b) shows that, although the transcritical flow solutions over asymmetric obstacles
are uniform downstream, they have different heights and therefore different velocities. Also,
we note that the asymmetry of the obstacle causes a significant difference in the heights of
the three free-surface profiles directly above the obstacle (−2·0< x<2·0).

The most interesting of these is the subcritical solutions in Figure 6(c). Here we see that
the amplitude of the waves downstream of the asymmetric obstacles are significantly larger
than the amplitude for the flow over the symmetric obstacle. We also note that downstream
of the obstacle the two asymmetric solutions coincide with each other and are both approxi-
mately a half wavelength out of phase with the symmetric flow.
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(a)

(b)

(c)

Figure 6. Comparisons of flow over symmetric and
asymmetric obstacles. In (a) Supercritical flow, s =5·0,
h = 0·4, Fu = 1·7, in (b) Critical flow, s = 5·0, h = 0·2,
and in (c) Subcritical flow, s = 7·0, h = 0·13, Fu = 0·5.
(Solid: l1 = l2 = 2, Dashed: l1 = 1, l2 = 3, Dot-dashed:
l1 =3, l2 =1).

(a)

(b)

(c)

Figure 7. Examples of flow over arbitrary (solid line)
and symmetric (dashed line) obstacles. In (a) Super-
critical flow, s = 5·0, l = 2·0, h = 0·4, Fu = 1·7, in
(b) Critical flow, s = 4·0, l = 2·0, h = 0·2, and in (c)
Subcritical flow, s =7·0, l =2·0, h =0·14, Fu =0·5.

6.3. FLOW OVER ARBITRARY OBSTACLES

Another interesting application for the analytical series method is flow over arbitrary topog-
raphy. The bottom boundary we used was obtained by vertically moving the knot points of
a symmetric cosine-shaped obstacle. Although each point was moved by an arbitrary dis-
tance, the general shape of the obstacle is preserved. Increasing the maximum distance a
point is allowed to move will increase the complexity of the topography. The evenly spaced
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knot points are used as collocation points to calculate the Fourier-series coefficients for the
bottom boundary representation. Figure 7 displays supercritical, transcritical and subcritical
flow solutions over arbitrary shaped obstacles.

Figure 7(a), shows that supercritical flow over the arbitrary obstacle is similar to the flow
over an asymmetric obstacle (Figure 6(a)), in that the solution is slightly skewed towards the
point of maximum obstacle height. We note that, although the obstacles have the same max-
imum height, the resulting free surfaces have a significant difference in maximum height.

Figure 7(b) shows that transcritical flow over the arbitrary obstacle is very close to the
flow over the symmetric obstacle. We note that there is a small difference in the height of the
flow downstream, and that there exists a “bump” in the profile above the point of maximum
height of the arbitrary obstacle.

From the subcritical solutions in Figure 7(c), we see that there is a significant difference
in the initial drop of the fluid that occurs above the obstacle (x ≈0), and in the amplitude of
the downstream waves that have also experienced a horizontal shift.

7. Discussion and conclusions

In this paper, analytical series solutions for two-dimensional, single-layer fluid flow over
topography have been presented. The solution process consists of iteratively updating the
position of the free surface by evaluating a cost function. The updated top boundary effec-
tively reduces the Laplacian free-boundary problem to a regular known boundary problem at
each step. A new set of series coefficients is then calculated using the principle of eigenfunc-
tion expansions to define the updated solution. Error measurements are immediately available
for use as convergence criteria for the update method. This procedure was used to calculate
supercritical, transcritical and subcritical flow solutions over symmetric, asymmetric and arbi-
trarily shaped obstacles.

An important feature of the solution technique is the method used to represent the top
and bottom boundaries. The solution process is independent of the boundary representation,
so we have an almost limitless choice of interpolant. We displayed the convergence rates for
six different interpolants, and showed that exponential convergence in the series solution is
possible using a Fourier sine-series representation of the boundaries.

The analytical series method was used to calculate flow solutions over asymmetric and
arbitrarily shaped obstacles. Our results suggest a strong relationship between the skewness
of the obstacle and the horizontal position of the downstream waves during subcritical flow.
Also, the wavelength did not appear to be affected by the skewness, but the amplitude of the
waves was significantly altered.

Solutions for flow over symmetric obstacles were compared with those calculated previ-
ously by the boundary-integral method. It was observed that the RMS errors in the solutions
calculated with the analytical series method were consistently lower than this implementa-
tion of BIEM. A difference of two orders of magnitude was observed in the errors for the
Bernoulli condition during subcritical flow, arguably the most difficult flow regime to solve.
Another difference was observed when examining the maximum obstacle height possible for a
stable subcritical solution. BIEM calculated a range of dual transcritical/subcritical solutions
for a single obstacle. Because of the accuracy of the analytical series method, we conclude
that there is no basis for accepting the earlier conclusion that there are obstacles that have
both a transcritical and subcritical flow solution.

We are currently extending the series method to more realistic atmospheric models.
In particular, non-Laplacian flows resulting from isothermal or linear-temperature-decay
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atmospheric models are being computed. In addition to this the efficiency and accuracy of
the series method allows us to extend our computations to the three-dimensional version of
any of these problems. We will be presenting these results in future publications.
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Springer (1960) pp. 446–778.
5. L.K. Forbes and L.W. Schwartz, Free-surface flow over a semicircular obstruction. J. Fluid Mech. 114 (1982)

299–314.
6. L.K. Forbes, On the wave resistance of a submerged semi-elliptical body. J. Engng. Math. 15 (1982) 287–298.
7. A.C. King and M.T.G. Bloor, Free surface flow over a step. J. Fluid. Mech. 182 (1987) 193–208.
8. F. Dias and J.M. Vanden-Breock, Open channel flows with submerged obstructions. J. Fluid. Mech. 206

(1989) 155–170.
9. A.C. King and M.T.G. Bloor, A Semi-inverse method for free surface flow over a submerged body. Quart.

J. Mech. Appl. Math. 42 (1989) 183–202.
10. S.R. Belward and L.K. Forbes, Interfacial waves and hydraulic falls: some applications to atmospheric flows

in the lee of mountains. J. Engng. Math. 29 (1995) 161–179.
11. S.R. Belward, Fully nonlinear flow over successive obstacles: hydraulic fall and supercritical flows. J. Austral.

Math. Soc. Ser. B. 40 (1999) 447–458.
12. W.W. Read and R.E. Volker, Series solutions for steady seepage through hillsides with arbitrary flow bound-

aries. Water Resources Res. 29 (1993) 2871–2880.
13. A.W. Gill and W.W. Read, Efficient analytic series solutions for two-dimensional potential flow problems. Int.

J. Numer. Meth. Fluids 23 (1996) 415–430.
14. S.S.P. Shen, Forced solitary waves and hydraulic falls in two-layer flows. J. Fluid Mech. 234 (1992) 583–612.
15. W.W. Read, Series solutions for Laplaces equation with nonhomogeneous mixed boundary conditions and

irregular boundaries. Math. Comput. Model. 17 (1993) 9–19.
16. W.W. Read, S.R. Belward and P.J. Higgins, An efficient iterative scheme for series solutions to Laplacian

free boundary problems. ANZIAM J. 44 (2003) C644–C663.
17. D. Gilbarg and M.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed. Berlin:

Springer (1983) 530 pp.
18. S.R. Belward, W.W. Read and P.J. Higgins, Efficient series solutions for non-linear flow over topography.

ANZIAM J. 44 (2003) C96–C113.


